[ 881 ]

XX. Researches in Physical Geology. By W. Hoexins, Esq. M.A. F.R.S., Fellow
of the Royal Astronomical Society, of the Geological Society, and of the Cambridge
Philosophical Society.—First Series.

Received November 22, 1838,—Read January 17, 1839.

On the Phenomena of Precession and Nutation, assuming the Fluidity of -the Interior
of the Earth.

\. Preliminary Observations on the Refrigeration of the Globe.

BEFORE I proceed to the discussion of the question which forms the principal sub-
ject of the present communication, I shall offer some general remarks on the refri-
geration of the globe, as introductory not only to this memoir, but to others which I
hope hereafter to bring under the notice of the Society.

In the first place, we may observe that there are two distinct processes of cooling,
of which one belongs to bodies which are either solid or imperfectly fluid, and is
termed cooling by conduction, and the other to masses in that state of more perfect
fluidity which admits of a free motion of the component particles among themselves.
In this case the cooling is said to take place by circulation or convection. The na-
ture of the former process has been ascertained with considerable accuracy by ex-
periment, and the laws of the phenomena have been made the subject of mathematical
investigation, but of the exact laws of cooling by the latter process we are compara-
tively ignorant. It is manifest, however, that since #ime must be necessary for the
transmission of the hotter and lighter particles from the central to the superficial
parts of the mass, as well as for that of the colder and heavier particles in the oppo-
site direction, the temperature must increase with the depth beneath the surface;
and, moreover, that this increase will be the more rapid, the more nearly the fluidity
of the mass approaches that limit at which this process of cooling would cease, and
that by conduction begin, since the rapidity of circulation would constantly diminish
as the fluidity should approximate to that limit. But still, even in this limiting case,
it seems probable that the tendency to produce an equality of temperature throughout
the mass will be much greater, and consequently the rate of increase of temperature
in approaching the centre much less, than if the cooling of the mass had proceeded
by conduction during the same time, the conductive power being very small.

If the matter composing the globe was originally in a high state of fluidity from
heat, the process of cooling would undoubtedly, in the first instance, be by circula-
tion. The manner in which the transition will take place from this mode of refii-

o6
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to %2
Philosophical Transactions of the Royal Society of London. BIN@RY

WWWw.jstor.org
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geration to that by conduction, depends on certain conditions, of which, in our spe-
culations on this subject, it is important to form a distinct conception.

Since the heat increases with the distance from the surface while the mass is cooling
by circulation, the tendency to solidification, so far as it depends on this cause, will
be greatest at the surface and least at the centre; but, on the other hand, the press-
ure is least at the surface and greatest at the centre; and consequently the tendency
to solidify, as depending on this cause, will be greatest at the centre and least at the
surface. To estimate this tendency under the joint influence of these causes, it would
be necessary, in the first place, to know the law according to which the temperature
increases in descending from the surface to the centre, while the mass is cooling by
circulation; and secondly, the influence of the temperature in resisting solidification,
as compared with that of the pressure in promoting it. These, however, are points
on which we possess at present little or no experimental evidence, and therefore the
only conclusion at which we can arrive is this,—that if the augmentation of the tem-
perature with that of the depth be so rapid, that its effect in resisting the tendency
to solidify be greater than that of the increase of pressure to promote it, there will be
the greatest tendency to become imperfectly fluid, and afterwards to solidify in the
superficial portions of the mass; whereas if the effect of the augmentation of pressure
predominate over that of the temperature, this transition from perfect to imperfect
fluidity, and subsequent solidity, will commence at the centre.

If we suppose the former of these cases to hold, it would appear that no incrusta-
tion of the surface could take place solong as any infevior portion of the mass retained
its perfect fluidity, because as the superior particles should become condensed they
would continually descend into the perfect fluid beneath, always supposing the mass
in that state in which an increase of specific gravity would result from a decrease of
temperature. The process of circulation would thus go on till every part of the mass
should have lost that degree of more perfect fluidity, which admits of a motion of the
particles among themselves being excited by their unequal refrigeration. The circu-
lation, therefore, would cease nearly contemporaneously in every part of the mass,
which would then begin to cool by conduction, rapidly at the surface exposed to the
Jow temperature of the planetary space, and extremely slowly in the central parts, on
account of the small conductive power of the matter composing the earth. Conse-
quently the globe would consist, after a certain time, of an exterior solid crust, and
interior fluid matter, of which the fluidity would increase in approaching the centre,
where it might stiil approach to that more perfect fluidity which admits of cooling by
convection. With reference, however, to the mechanical action of any forces pro-
ducing either motion or hydrostatic pressure in the interior mass, the whole of it
might, as an approximation, be considered perfectly fluid. No attempt has yet been
made to determine the present probable thickness of the earth’s crust, assuming it to
have been originally in a state of fluidity, on account of the difficulty already men-
tioned, arising from our ignorance of the influence of high temperature in resisting
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solidification, compared with that of great pressure in promoting it. All that has
hitherto been determined on the subject is, that the present state of the earth’s surface
may be consistent with the existence of a solid crust, of which the thickness is small
compared with the earth’s radius.

Let us now recur to the other case above mentioned, that in which the increase of
pressure in descending towards the centre of the mass is supposed to have a greater
effect in promoting solidification than the increase of temperature in preventing it.
Supposing the mass to have been first in a state in which every part was cooling by
convection, this process would first cease, and that of cooling by conduction begin
at the centre, while the superior portion would still continue to cool by convection,
so that these two processes would for a time be going on simultaneously in different
parts of the mass. It is manifest, however, that the central portion, cooling by con-
duction, would constantly increase, while the exterior portion, cooling by convection,
would constantly diminish, so that at length no part of the mass would be cooling by
the latter process. Before it should reach this stage of the refrigeration the central
portion of a mass so large as the earth might become perfectly solid, so that at the
instant when the circulation should entirely cease, the whole might consist of a solid
central nucleus, surrounded by the external portion still in a state of fusion, and of
which the fluidity would vary continuously from the solidity of the nucleus to the
fluidity of the surface, where, at the instant we are speaking of, it would be just such
as not to admit of circulation.

When the mass should have arrived at this stage of the cooling, a change would take
place in the process of solidification, which it is important to remark. The superficial
parts of the mass must in all cases cool the most rapidly, and now (in consequence of
the imperfect fluidity) being no longer able to descend, a crust will be formed on the
surface, from which the process of solidification will proceed far more rapidly down-
wards, than upwards on the solid nucleus. Consequently, then, our globe would
arrive at that state, according to the mode of cooling we are now considering, in
which it would be composed of a solid shell, and a solid central nucleus, with matter
in a state of fusion between them, the fluidity of which, however, would necessarily
be less than that which might exist in the fused mass very near the centre in the
case previously considered.

With respect to the thickness of the shell which may be consistent with the pre-
sent appearances of the earth’s surface, the same conclusion will hold as in the former
case, 1. e. it may be small compared with the earth’s radius. What would be the radius
of the solid nucleus at the instant of the first incrustation of the surface, or that which
would correspond to any assigned thickness of the exterior shell, it is quite impossible
to determine from the want of all experimental evidence respecting the tendency of
great pressure to promote solidification at very high temperatures, and our ignorance
of the temperature at which the superficial incrustation of a large mass would begin,

when exposed to the temperature of the planetary space. It is, therefore, manifestly
MDCCCXXXIX. 3D
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impossible to decide by any such reasoning as the above, whether the exterior shell and
solid nucleus are now united, or are separated by matter still in a state of fusion*.

Upon the whole, reasoning such as the above can lead us to nothing more definite
than the following conclusions respecting the actual state of the earth, assuming it
to have once been in a state of perfect fluidity.

(1.) It may consist of a solid exterior shell and an internal mass in a state of fusion,
of which the fluidity is greatest at the centre; and it is possible that the thickness
of the shell may be small compared with its radius, and the fluidity at the centre may
approximate to that which would admit of cooling by convection.

(2.) It may consist of an exterior shell, and a central solid nucleus, with matter in a
state of fusion between them. The thickness of the shell, as well as the radius of the
solid nucleus, may possibly be small compared with the radius of the earth. The
fluidity of the intervening mass must necessarily be considerably more imperfect than
that which would just admit of cooling by circulation.

(8.) The earth may be solid from the surface to the centre.

It appears then that the direct investigation of the manner of the earth’s refrigera-
tion, assuming its original fluidity from heat, still leaves usin a state of perfect uncer-
tainty as to the actual condition of its central parts, not from any imperfection in the
mathematical part of theinvestigation, but from the want of the experimental determi-
nation of values which it must ever be found extremely difficult, if not impossible, to
obtain with accuracy. Under these circumstances, we are naturally led to consider
whether any other more indirect test may be found of the truth of the hypothesis of
central fluidity. In reflecting on this subject, it occurred to me some time ago, that
such a test might possibly be found in the delicate but well-defined phenomena of
precession and nutation. The connexion between these phenomena and the interior
fluidity will at once be seen by those accustomed to physical investigations of this
nature; since it is manifest, that the direct action of those forces which produce the
precessional motion of the earth’s pole must be entirely different on the interior part
of the earth, if that part be fluid, to that which must be exerted, if the interior part
be solid. It becomes, therefore, a matter of interest to examine how far the internal

* M. Porssow, was, I believe, the first to advocate the hypothesis of the solidification of the earth having
gornmenced from the centre, and has stated in general terms that, in such case, it would proceed to the surface
which would be the last to solidify (Théorie de la Chaleur, p. 428.). It is manifest, however, from what has
been advanced, that this could not be literally correct, but that the solidification must necessarily commence at
the surface before the whole internal portion had become solid. The distinction is of little consequence as
respects the object which M. Porsson had in view, but is of the highest importance with reference to Geolo-
gical speculation, because it shows, that, supposing the earth once to have been fluid, it must be now or have
been at some antecedent epoch in'that state in which a solid exterior crust rests on an imperfectly fluid and
incandescent mass beneath. It forms no part of my immediate object, to consider whether the hypothesis of
this being or having been once the state of our planet, best enables us to account for the igneous matter which
has been injected so generally into the sedimentary portion of the earth’s crust, but it is important to know,
that this state of the earth, assuming its original fluidity, is one through which it must necessarily have passed
in the course of its refrigeration, whatever might be the process of its solidification.
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fluidity may consist with the observed phenomena of the precessional motion of the
pole. These phenomena have been shown to be perfectly in accordance with the in-
ternal solidity of the earth under certain hypotheses, which may be deemed perfectly
reasonable, respecting the law of density; but so far from any attempts having been
hitherto made to determine what would be the precessional motion on the supposition
of interior fluidity, I am not aware that the problem has been before suggested. I shall
now proceed to its solution, which forms the principal object of the present memoir.

On Precession and Nutation ; assuming the Fluidity of the Interior of the Earth.

In the present memoir I shall investigate the amount of the luni-solar precession
and nutation, assuming the earth to consist of a solid spheroidal shell filled with fluid.
To present the problem under its most simple form I shall first suppose the solid shell
to be bounded by a determinate inner spheroidal surface, of which the ellipticity is
equal to that of the outer surface, the change from the solidity of the shell to the
fluidity of the included mass not being gradual but abrupt. I shall also here sup-
pose both the shell and fluid homogenecous and of equal density. From this I pro-
pose in a future memoir to pass to the case in which the earth is considered as
heterogeneous.

§. Statement of the Problem.

1. If S denote the position of the sun, A the centre of the earth, A P its axis of in-
stantaneous rotation, the sun’s attraction tends to produce an angular velocity of the
earth about an axis through A, and perpendicular to the plane S A P. The moving
force producing this rotation (supposing the earth a homogeneous spheroid),

= 23—7{73 . % a?c (a?— c?) sin 2 A%,
where
@ = absolute force of the sun’s attraction.

A = sun’s polar distance.
r,=SA.
a, = equatorial radius.
¢, = polar radius.
Also the moment of inertia of the spheroid about the axis of this rotatory motion,

4=
=715 k a‘2 ¢ (a12 + 012)'

Consequently the accelerating force of rotation
3 w a—c

2
I A ANl P T
=g l“_clgsmzA
3 w .
=5 ;;gesm2A

(¢ = ellipticity of the spheroid) ; and if we denote this quantity by «, and the diurnal

* Arry’s Tracts, Precession and Nutation.
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angular velocity of the earth by w, the angular velocity of A P about A will = —:-:
the instantaneous motion of P being perpendicular to the plane S A P*,

2. But let us now suppose the spheroid hollow, the hollow part being spherical,
and having its centre coincident with that of the spheroid. The moving force of ro-
tation will be unaltered, but the moment of inertia will

4 8
= —l—grkaf’- ¢ (a2 +c?) — ~1—75r—k1~”
(r = radius of the hollow sphere). Therefore « will now

3 » ale (a? + ¢f)

— . .

sin 2 A,

which, if » be considerable, will be much greater than its former value.

3. Again, let us suppose this hollow sphere filled with matter in a state of perfect
fluidity. The pressures of this fluid on the interior spherical surface of the shell con-
taining it being normal pressures (whatever be the causes producing them), their
directions will all pass through the centre of the spheroid, and cannot therefore in-
fluence the rotatory motion we are now considering ; and since there will be no fric-
tion with the assumed perfect fluidity of the interior matter, the value of « will be
precisely the same as that above stated, when the internal sphere is entirely empty.
A much greater motion of the pole would therefore result from this constitution of
the spheroid than if it were perfectly solid ; and it would, moreover, be entirely in-
dependent of the position of the axis of rotation of the internal fluid.

4. If the internal surface of the solid shell be spheroidal instead of spherical, the
directions of the fluid normal pressures will no longer pass through an axis through
the centre of the earth; and when the axes of diurnal rotation of the solid shell, and
of the internal fluid do not coincide (as must generally be the case from the different
actions of the sun and moon on the solid shell and on the fluid contained in it), the
fluid pressure arising from the centrifugal force will introduce a new and important
element into the calculation of the precessional motion of the pole. I shall now pro-
ceed to the determination of this motion on the hypotheses previously stated.

§. Formation of the Differential Equation for the Motion of the Pole.

5. Conceive a sphere of radius unity described about the centre of the earth, which
centre we shall always denote by A. Let IT (fig. 1.) I
be the point in which a line through the centre and
perpendicular to the plane of the ecliptic meets the Fig. 1.
sphere; and P and P’ the points in which it is met re-
spectively by the axes of instantaneous rotation of the

solid shell and of the internal fluid mass+. Let P ]:’ P
and P' be referred to the small circle O M, of which II |\ _—
MM

is the pole, and to great circles IT P M, IT P’ M' respect-

* Arry’s Tracts, p. 197. -
+ The axis of instantaneous rotation may be regarded a8 coincident with the spheroidal axis of the earth;
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ively, IT M being very nearly equal to the obliquity of the ecliptic. Take O an
arbitrary fixed point in the small circle, and let -

OM==x OM' =a

MP=y M'P' =4/,
y, ¥ and x — ' will be in general very small, and may, therefore, be considered as
straight lines. Our object will be to form a system of four simultaneous differential
equations, the integration of which will give «, y, 2/, and ' as functions of £. For this
purpose I shall first consider the arguments of the different terms in the expressions
for %-“';-', —tfi—‘?a % and %yt_” which severally express the effects of the different physical
causes affecting the motions of P and P, postponing the calculation of the numerical
values of the coefficients till we shall have integrated our differential equations, as we
shall then have the advantage of knowing what degree of accuracy may be essential
in the determination of these values.

I. The Attraction of the Sun on the Solid Shell—This will produce effects of pre-

cisely the same kind as if the spheroid were solid, but with different coefficients
(Art. 2.), and therefore, if the motion of P depended on this cause alone, we should have

%:AI-—B,_cos2(nt+7\)

d .
7%: D,;sin2 (n¢+ 1),
(where n ¢ + A is the longitude of the sun at the time ¢), these being the forms of the
expressions which give the precessional motion of the pole, and its motion of nutation
as far as they depend on the sun’s action.

II. The Attraction of the Moon on the Shell. —This alone would give us

d

—J'; = A, — B,cos2 (n't + 1)
dy .

4= D,sin2 (n't 4 '),

w
period of D’s node’

II1. The Interior Pressure on the Shell from the Attraction of the Sun on the Fluid
Mass.—If the whole mass of the earth were perfectly fluid, and its undisturbed form
spherical, the attraction of the sun alone would transform this sphere into a prolate
spheroid, of which the longer axis would lie in the line through S and A, the
centres of the sun and earth; and similarly if the interior surface of the solid shell
which we suppose to contain the internal fluid were spherical, the sun’s action would
tend to make this fluid assume the spheroidal form just mentioned, and would con-
sequently produce a fluid pressure on the interior surface of the solid shell, which

where n' =

for the greatest angular separation will be of the same order as ¢ . P AP', and may therefore be neglected in
comparison with P A P,
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would be equal at all points similarly situated with respect to the line just mentioned
through the centres of the sun and earth. If the interior surface of the shell be sphe-
roidal, but of small eccentricity, very nearly the same effect will be produced. The
pressure in this case will be exactly equal at points similarly situated with respect to
a plane through the sun and the axis of rotation (A P) of the shell, and will conse-
quently tend to communicate a rotatory motion to the shell about an axis perpen-
dicular to this plane and through the earth’s centre ; 7. e. about the same axis as that
about which the attraction mentioned in (I.) tends to communicate a rotatory motion.
Also the effects of this pressure must recur with recurring positions of the sun exactly
in the same manner as the effects of the sun’s attraction just alluded to. Hence the
terms depending on this cause will be of the same form as those in (I.), as will, in
fact, be proved to be the case when we come to investigate their exact value. They
will, therefore, give us

%{-:Ag—B30052('nt+7\)
%%: D;sin2 (nt 4 2).

IV. The Interior Pressure on the Shell from the Attraction of the Moon on the Fluid
Mass—This will give us terms similar to those arising from the sun’s action. From
this cause alone, therefore, we should have

d
d—f=A4—-B4cos,2(n't+7\’)

%i’; = D,sin 2 (#' ¢ 4+ ).

V. The Interior Pressure on the Shell from the Centrifugal Force of the Fluid Mass.
—Wohen P and P’ do not coincide, the interior fluid mass will tend, from the effect of
centrifugal force, to assume a form different from that of the interior surface of the
solid shell. Thus normal pressures will be produced on the interior surface of the
shell; and they will manifestly act symmetrically with respect to a plane through P,
P’ and A the centre of the earth, i. e. through the axes of rotation of the solid shell
and of the fluid mass. Consequently the tendency of these pressures will be to com-
municate a motion of rotation to the shell about an axis through A, and perpendi-
cular to this plane; and the consequent motion of P, if this force alone acted on the
shell, would be perpendicular to P' P, the axis of rotation of the shell having, from

this cause, an angular velocity in space = %ﬁ (Art.1.) «",being the quantity analogous
to « in the article referred to; or since P and P’ are supposed to be on the surface of
a sphere whose radius is unity, %’— will be the linear velocity of P perpendicular to P' P.
Now when we come to the calculation of the quantities involved in these investiga-

" .
tions, we shall find that %— = y, sin 2 B, where v, is a constant quantity depending on
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the diurnal angular velocity (), and on the magnitudes and ellipticity of the fluid
spheroid and solid shell ; and where 3 == the angle P A P/, or = the line P'P. Con-

sequently,
al!

—=¢,8in2.P P,

w

or, since P' P will always be extremely small, the linear velocity of P perpendicular
to P' P,
o
:=~w—=2'y1.P'P;
and resolving this in directions parallel and perpendicular to M' M, we have (4 being
the angle which P' P makes with the axis of x)

d .
Sr=—2y . PP.sind=—29 (@y—y)

dy
T3=2%.PPcosy =2y (z—2).

6. If we now take the sum of the different terms which express the effects of the

o . . d
several causes affecting the motion of P, we obtain for the complete values of 2_{; and

dy
ar
d
.d_j =(A +A+A;+A)— (B +By)cos2(nt+2r)— (B, + B,) cos 2 (#' £ + 1)
—2n @ —Y);
‘%z (D, + D,)sin2 (nt +2) + (D, 4+ D)) sin 2 (' £ + n)
+ 2y (x—a');
or putting
A+ A+ A+ A=A
B,+B;=B
B,+B, =0
D, +D;=D
D, + D,=D'

%ﬁ?.{.gyl(y_y’)=A—Bcos2(nt+7\)—-B'cos2(n’t+7\’)

(A)
:%-— 29, (x— ) =Dsin2 ¢+ 1)+ D'sin2 (0 ¢ 4 1)

§. Motion of the Internal Fluid.

7. When any accelerating forces, X, Y, Z, act upon a homogeneous fluid mass of
which the whole surface or any part of it is free, we have two conditions of equilibrium,
viz. that X da + Y d y 4+ Z d z must be a perfect derivation of a function of the three



390 MR. HOPKINS'S RESEARCHES IN PHYSICAL GEOLOGY.

independent variables x, v, 2, and that X do + Ydy + Z d 2 = 0, must be the
differential equation to the free surface. If however no part of the surface of the
fluid is free, as when the whole mass is contained in a rigid shell which it entirely
fills, the former of these conditions is the only essential one of equilibrium. Also if
there be several sets of forces which separately satisfy this condition when referred
to different systems of coordinate axes, it will manifestly be satisfied by all these sets
of forces taken conjointly ; and if any proposed set of forces do not satisfy it, we may
still omit, in the determination of the motion resulting from these forces, those terms
in the expressions for X, Y, and Z, which taken conjointly do satisfy the analytical
condition now spoken of. These considerations will materially simplify the following
investigations. :

8. We have now to consider the tendency of the forces acting on the internal fluid
to put it in motion.

1. Disturbing Force of the Sun.—Let x, y, ¢ be the coordinates of any particle (Q)
of the internal fluid, the centre of the earth (A) being the origin, the line joining the
centres of the earth and sun (A S) the axis of x, and the axis of x being perpendicular
to the plane of the ecliptic. 'We shall then have

the disturbing force on Q parallel to x = 2 L

7
the disturbing force on Q parallel to y = — 55 Y
the disturbing force on Q parallel to x = — :—I';; " %,

]

substituting these quantities for X, Y, and Z respectively in the expression X d x
+ Ydy + Z d &, it manifestly becomes a perfect derivative. Consequently the
condition of equilibrium is satisfied, and the action of the sun has no tendency to
communicate motion to the internal fluid.

I1. Disturbing Force of the Moon.—The investigation and result are precisely the
same as for the sun.

IT1. Centrifugal Force.—Ininvestigating the equations of motion for the solid shell,
it has been assumed (Arts. 4. 5.) that the spheroidal axis of the shell will not generally
be coincident with the axis A B’ of rotation, which is now proved to be true, since the
disturbing forces of the sun and moon, while they produce a motion of the shell, cause
no motion by their immediate action in the fluid. Let B' A ¥ (fig. 2.) be theaxis of ro-
tation of the interior fluid, and suppose the spheroidal axis first to coincide with it, the
dotted ellipse then representing the section of the interior surface of the solid shell.
"T'he shell, its form being supposed coincident with that of equilibrium of the fluid,
will, in this case, produce no constraint on the fluid motion; but conceive the shell

“to be afterwards brought into the position represented by the continuous ellipse, A B
being its spheroidal axis, while B' &' shall still represent the instantaneous axis of ro-
tation of the fluid. It is manifest that the planes of rotatory motion of the fluid par-
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ticles near B’ and &' can no longer, as in the former case, be perpendicular to A B/, but
must be constrained to move in planes very nearly parallel to the tangent planes at
B'and ' ; and it is also sufficiently obvious that whatever effect is produced on the

planes of motion of the above particles, a similar effect must be produced on those
more remote from B'and 4. Moreover, the mutual action of contiguous particles
situated in contiguous planes of rotation will necessarily preserve a very approximate
parallelism of these planes throughout the mass. We may conclude, therefore, that
the instantaneous planes of rotation will always approximate, in a greater or less de-
gree, to parallelism with the tangent planes at B'and ¥/, the extremities of the instant-
aneous axis of rotation of the fluid. In the investigations immediately following, we
shall assume this to be accurately true, and shall prove subsequently the accuracy of
the approximation to the true motions thus obtained. If M N’ be one of these planes
of motion, M N perpendicular to A B/, and s+ = angle N M N/, we shall have s = 2+,
as may be easily proved.

9. The sections of the interior surface of the shell made by these planes of rotatory
motion will be similar ellipses, so that the angular velocity of rotation will no longer
be accurately uniform. If, however, ¢’ be the eccentricity of these sections, ¢ the
ellipticity of the spheroid, and 3 the angle B A B' (which will always be extremely
small), it is easily shown that

€? = 2¢0.
This is so small that we shall still consider the angular velocity uniform, which will
be proved in the sequel to be correct to the degree of approximation to which it is
requisite to carry our investigations.

MDCCCXXXIX. 3E
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We may proceed to determine the centrifugal force on the fluid.

10. Let AB' be now taken for the common axis of z and 2/, A C, perpendicular to
A B, for that of #, and A D', conjugate to A B/, for that of 2/, the axis of y being per-
pendicular to the plane B A B', that of the paper. x, y, = will be the coordinates of any
fluid particle (Q) referred to the rectangular system of coordinates, and &/, 7, 2’ those
of the same particle referred to the system in which the axis of 2’ is oblique to the
plane of ' y. Also D’ AC = NM N' = (Art. 8. IIL.). Then if 7/ be the distance
of Q from the axis of rotation of the fluid, measured in the plane of its motion, the
whole centrifugal force on Q in the direction of ' = «? ', which (since 2’ and y are
rectangular) is equivalent to »? 2’/ parallel to the axis of &/, and »? ¢ parallel to that
of y. Hence

X =22 cost = a®x,
Y =4ay,
Z =2 sini = 2a¢(3 .2 (Art. 8.).

These forces do not satisfy the conditions of equilibrium, and therefore the assumed
position will not be one of equilibrium. The conditions would be satisfied, however,
if the only forces were «* » and #? y, and consequently the only force which would
tend to produce motion would be Z, or 2 4?¢ 3. x. This is therefore the only part of
the centrifugal force of which it is here necessary to take account.

11. In determining the motion produced by this force Z, we may observe, that
since it acts symmetrically with respect to the plane of x =, by which the interior
surface of the shell is divided symmetrically, there can be no motion in directions per-
pendicular to that plane. The motion of each fluid particle must therefore be in a
plane perpendicular to the axis of y, and must moreover be independent of y, since Z
is so. Hence the determination of the motion is reduced to the case of fluid motion
in one plane, where (the plane itself being taken for that of x 2) each particle is acted
on by the force Z = 2 »?¢(3 . «, and the boundary of the fluid is an ellipse whose ellip-
ticity is ¢, and whose centre is the origin of coordinates.

12. The general equation -
dp=Xdax+Zdx,
where X and Z are forces which maintain the fluid in equilibrium, is easily reduced to

dp=Rdr+ 0Ordi,
where r and 0 are polar coordinates of any fluid particle, R the accelerating force
upon it in the direction of », and ® that in a direction perpendicular to the former.
Hence we have the condition of equilibrium
R _d.0r,
dy — dr ’
or if O be the force acting on the fluid, but ® 4 @' that which would produce equi-

librium with R, we have
dR _d.(®r+®r)
a8 = dr ’
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Now in the case to which this condition is to be applied, we have (¢ being measured
from the axis of x, and » from the origin of x and )

R =Zsin/d
=2w*¢Brcosdsind

13

=5 rsin2d, (k=2aw*¢PB);
Or=~Zcosd.r
== k12 cos? 4,
dR
.'oﬂ=krcos?28,
fl—'d(ar =2krcos?d
-

=Fkr (1l 4 cos2).

Substituting these values in the above equation,

d.® ¢
krcos2d="Fkr(l 4 cos2d) + dr?’
d.Or
e =—kr,
QO r— ﬁ,.a_l_(p(g).
r=-—7 ;

and since @ » must vanish with », ® (¢) must = 0, and

or if forces @ = — "é‘ r,and Z = kx act on each fluid particle, there will be no

motion.

Now suppose forces —2— rand — ]—; r equal and in opposite directions to act on each
particle perpendicular to r, together with Z. 'The motion produced by Z will not be
affected by this superposition. But the forces Z (= k x) and — ‘Z‘ rare in equilibrium,
and therefore the motion produced by Z must be the same as that which would be
produced by —f,— r, acting perpendicular to r.

13. Since the motion we are considering is in space of two dimensions, the surface
of the fluid must be defined by some plane curve, if the particular form of which the
result at which we have just arrived is quite independent, being subject only to the
condition that no part of the fluid surface shall be free. Let us suppose the curve to
be a circle, of which the centre is the origin of coordinates. The angular accelerating

force on each particle = 5 » and is, therefore, the same for every particle. Also the

3E 2
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reaction of the surface would, in this case, have no effect on the angular motion of
the fluid. Consequently the angular velocity generated by Z in a unit of time would
k

2

14. If the boundary of the fluid be an ellipse of which the centre is the origin and
the eccentricity very small, the same result will manifestly be very approximately
true.

This last is the case, in which it was necessary to determine the angular motion
(Art. 11.). It follows that the angular velocity of the internal fluid mass round the

axis of y, which would be generated by the force Z in a unit of time = -, or (substi-

tuting the proper value of k) it = 2 ¢ 3, neglecting quantities of the order ¢ (.

15. This angular velocity will be compounded with that about the axis of % ().
Now if we again suppose the fluid mass to be spherical, it would manifestly move
precisely as if it were solid, since the angular velocities » and «? ¢ 3 about the axes of
x and y respectively are common to all the particles of the mass, and the axis of in-
stantaneous rotation would consequently have an angular motion in space perpen-

o!
dicular to the plane B A B' (fig. 2.) and = — = w ¢ 3. If the fluid mass be sphe-

roidal, as in our actual case, the ellipticity being small the same result will be very
approximately true.

We may now proceed to the formation of the differential equations for the motion
of the instantaneous axis of rotation of the interior fluid, or of the point P’ (fig. 1.).

. Formation of the Differential Equations for the Motion of P' (fig. 1.).

16. Since the angular velocity of A B (fig. 2.) isws .3 (Art. 15.) in a direction per-
pendicular to the plane B A B/, the linear velocity of P' (fig. 1.) will also be we . 8, or
we.PP; orifwe =2y, the linear velocity of P' perpendicular to P P'=2v,.P P\
This is exactly similar to the expression for the motion of P perpendicular to P P’
(Art. 5.V.), but it will be observed that the angular motion of the fluid about the axis
perpendicular to the plane B A B’ (fig. 2.) which the centrifugal force tends to pro-
duce, is in the direction opposite to that of the angular motion of the shell which the
fluid pressure on its interior surface, arising from this centrifugal force, tends to pro-
duce (Art. 14.). Hence to obtain the differential equations for the motion of P’ we
have only to put — v, for ¥, in the equations of Art. 5. V. We thus have (now de-
noting by « v o’ and y' the same quantities as in Art. 5.).

dl

d‘z; - 27’2(.’/—3/')=01
. (B.)

dl

T2nE—a)=0|
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. Integration of the Differential Equations for the Motions of P and P'.

17. The equations (A) and (B) (Arts. 6, 16.) form a system of four simultaneous
differential equations, viz.

dt+271(1/"3/) =A - Bcos2(nt4+1r)—Bcos2(@t+n), . . . (1)
Y 9y (e—a)=  Dsin2@mt+n+Dsin2@t4%), . . . (2)
2y —Y)=0, . . . (3Y
W sype—a)=0. . . . . L (4)
(1) X v, 4+ (8.) X 9, gives
dzx da

Yogs + N =12 A= Beos2(nt 1) —y,Beos2(n't + 1),
and (2.) X 7, + (4.) X 7, gives
4y dy i Ia3 ! !
72_&7—2-{_71722; ')/ZJDSII\2(’nt +7\) +72D Sln2(n t+7\),

Integrating these two last equations,

Y&+t =y, At — ——}-3—s1n2(nt+7\) 2713st(nt‘—}-k’)+c1, . . (b))
)
Yoy + 9y = — 79[ €082 (nt 1) — os,‘z(nt-{-k’)—l-«:2 ... (8)

To determine the arbitrary constants ¢, and c,, let «, y, 2’ and y' each = 0 when ¢ = 0.
Then

/o B B
cl—-—é—— sin 2 A -+ 72 sin 2

. 3’._2__]2. . v D' '
€= 5, cos 2 A + o, COS 2 M.

Equations (5.) and (6.) are two integrals of our four differential equations.
18. Substituting in (1.) and (2.) for ¥’ and «/, we obtain

dx

, D
gt2ntry=2 02+A—(B+-12;Z—~)cos2(nt+)\)
(B’ = )cos2(nz‘+x),
—2n+tr)r=—2q+ (D+1—2£)sin2(nt+>\)

-+ (D’+ B)smz(n EN)— 29, AL
Let Y =" + Yo K= 72 A’

L=2c+ A, L'=—2¢,
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M=B+ %2, M =B + 27,
N =D + 22, N=D+ 2.

Then
%+27y=L—Mcos2(nt+K)—M’cos2(n’t+)\’),

&Y 9ye=L +Nsin2(nt+n) +Nsin2@t+) —2K¢s
The integration of these equations will be easily effected by the method of the vari-
ation of the arbitrary constants. The simultaneous equations
dax
dt +2 7Y = 0,

dy
4f —2v7x=0

are satisfied by

x=0C,cos2yt— C,sin2¢y¢ (©)
y=0C;sin2y ¢+ C,cos2y¢ T

and if we write equations (B.) under the form

d
T t2ry=2 (@),

dx :
';17—2')/1’:\]?0),

we shall have, considering C, and C, as functions of ¢,

dC dC, .
-a—l—fcos2fyt— 7 8in 2 y ¢t = (2),

dC, . dC
7 sin2yt+—Fcos2yt="Y(1);
dc, .
Sz =cos29t. D (f) +sin2y¢. ¥ (),
ac, . >
g7 = —8in2¢¢t. D (¢) +cos2y ¥ (¢).

Each term in C, and C, corresponding to the several terms in @ (¢) and ¥ (¢) may be
determined separately.
Let ® (¢) = L, ¥ (¢) = L'; then

dC .
7 =L.cos2yt+4 L'sin2y¢,

dC .
g7 =— Lsin2yt+ L'cos2 y¢;
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L L
—— sin t - 3-¢
s G = Gy in 2y g COS 29t

L
C, _-—300527t+ sm27t

Let ® () = —Mcos2 (nt + 1),
¥(t) = Nsin2(nt-+42); then

dd(z‘=-—Mcos27t.cos2(nt+7\)+Nsin2'yt.sin2(nt+;\),
%%: Msin2yt.cos2(nt+ )+ Ncos2yt.sin2(nt+1);
dc,

'.W='—%/I— {cos?(?:—n_t—)\) +cos2(7+nt+7\)}

+%{cos2(7:—_7it—7\) —-cos2(y+nt+h)};

and - C. = M—N.sinQ(iy—nt—A) M+ Nsin2(y +n¢ + a),
and 4y = — g 2(y = n) — 2 2(y + n) :

ic—lgtg:%{Sin2(7+nt+7\)+Sin2('y—nt—7\)}

-I-%I- sin2(oy-|—-nt+7\)-sin2(7—nt—7&)};

. _ M4+ N cosQ(ry+nt+A) M~N cosQ(y—nt—A)
and .. C, = — — 2y 1) % 2y =)
Taking ¢ (¢) = — M'cos2 (n't + 1),

Y (¢) = N'sin2 @' ¢4+ N),
we shall obtain in a similar manner

M —N' sin2(y — y — 1t —N) M’+N'.sinQ('y+n’t+A')

17T e 2(y =) 2 ey +n)
C. = M’+li’_ (032(y+n’t+A')_M’ - N cosQ(y—-n’t—A’).
2 2 2(y +7) 2 2(y —n)
Let () ==0,+ (¢) = — 2K ¢; then

aC .

-7 = —2K¢.sin2y¢,

dC

5 = —2Kt.cos2y¢;

. styt cos 2yt

..Cl==—2K( - 277 .t),

C,= —2K (cos27t+ smggyyt.t).
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Hence for the complete values of C, and C, we have
L L/
Ve e @Iy © — e
Cl—gysmz'yt 2700s2fyt

M~—-N M+ N
Z’(Ym“)SID2('}/ —7\) 4(—*:’_71)Sln2(7+?2t+7)
M — M + N . T
Z‘(’;‘““’*‘)Sln2(7—nt—-7\.) 4(7—:_n,)Sln2(ry+n't+)\l)

st'yt cos‘Z'yt

—2K. ( - t)+ ;
2y K
C, = 7t+~—~ 2yt
9 = COS2 2 Sll’l

M+ N ——— M-N
—-w0082(7+nt+7\) 4(7 COSZ(‘}’—-nt-—K)

M + N MI N o
4('y+n')cos-'(7+nt+7\’) ( _nr’)COSQ(fy-—n’t__;\’)
cos2wvyt st t
— 2K (TS ) e,

where ¢y and ¢, are arbltrary constants.
Substituting these values in equations (C.), we obtain after reduction,

L aM—yN N,
X = — +2(7 'yng s1n2(nt+7\)+—2—(~3——%g)~sm2(n’t+7\’)
(7.
+c cos2ryt-—c sin2'yt+—'t;
3 4 y D)
— L K 'YM 7M — !

g/__Qy—-QY S = ng) cos2(nt—|—7\) 3y n”) cos2(nt+)\) (8)

+ c38in2y9 ¢ 4 c,cos2 ¢t . ]

To determine the arbitrary constants ¢; and ¢y, we have = 0 and y = 0 when
¢ = 0, which gives

nM — 'yN M — ¢y N, , o LU

C3 = — 2(7 s1n27\ W:n—,g)'SIHQK +'2—;,
_ yM—aN M—wN_ (LK
cy = 2 (7 = )cos27\+ Q(yg_nm)coswx-— 27-ng

Equations (5) (6) (7) and (8) are the four integrals of our four differential equa-
tions.

We bave now to express the coefficients of equations (D.) in terms of A, B, B, D,
and D'.

L/ __'YQ(B B ,)
oy = 2”s1n27\+g ; 8in 2 A
L K A A
g—;-—-—z‘?"‘y—g(gn00527\+2 ,COSZ?\')—I-——‘*—-%—Q—
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= %—f— (—g%cosm\ + -Q%cosm\’) + %;,‘-%
nM — 7N=nB-—g)2D—7D—7%B
B (3= o

ey = - D+ (PR - )Y
I —'nD+-yQ—n“ nD 1 2

M —y N _1¥ + 7 ZB’__ ]) L4
2(y =0 — A DT -\ D ®

'yM—nN=7B+y"~2’-D~—nD—72B

(=D

Similarly,

_yM=—sN_ {1 Yl_(*/ 2) 12,
2(y2—n?) — w9 —12\u D/ (2
Similarly,
yM =N "1 -y )
T2 (yt —u?) "'_{7&’——7—4#2 W T D
K.
7——' A'

zojp-

71 Y 'r
+{:;};;r—-,ya_fn§ D')} 5 Cos 22" — 7—,

Hence we obtain by substitution,

x_{—h“ V—n‘l('yB 1) }Sm2(nt+)\)

+{_§‘77+ 5 ', Z,g, l)é—}sin2(n't+;\l) (E.)
Z'l 013"81“2)\ o 3:1% l)gsinm\

+ +7 gnsmg;\' —Y_lzﬁ %g—l)%’sinw\'Jmm”

MDCCCXXXIX. 3F
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D
%.%.00527\—-;51;'—;‘; 2,:——-% 2 COS2A 1
- sm2yt
D ’ N
+%}«~mcos27\’_;§:—;ﬁ —'Z— D') 00827\'——';;4—2—/[
Y2 'yg( )
+')’At+7 21:8“127\'*‘2‘/81027\’
D
y=_{ﬂ_7’:ne _—ﬁ> }COSQ(nt-‘-}\)
-{'2"’—_—_—7”’("—") }COS2(nt+}J)
BT o (2B 0)2y
72n51n27\—79 o] "D"'l 28][127\, . .
sm2qyt i
+* 71 B! N ] 71 ')’B’ D . , % ( )
+7——n7sm27\-—m 2B ) Dinea
1 D
TN S
] N osan — N 1__13_')‘_(:82;\, %.éwoszyt
+ 72", ,y __n nl D’ (4] 1 2

A
+7y‘"(,£lcos27\+o ,cos27\’) +

From equations (5.) and (6.) we have

B D A “

xJ=-V—(znsm2(nt+x)—-————gl,sm2(nt+x)+ At+l %z,
ve D D

y’:—';gn0082(nf+7\)-—~————

”, 2z,cos2(nt+)’)+ %y;
and substituting in these expressions the above values of x and y, we have

F— nD )-sm2(nt+>\)

. v B D .
"“',y-zzznlg WD 1)‘2‘5"12(71't+lr)
B . B D .
%Q——nSInQA——;%E@(%-D——I)——st?\
—_ cos2yt (G
+Y2n151n2}‘.,"“7‘/§‘2’2“n?§(_7g"_—1)“"5“’127\,
Y2 = cos 22 rn_(r_3B = COS 2 A
v 2 n® \n D/ 2 -
-+ 4 sin2¢y¢
D/ B\ D A
L+Z§§—coe27\' 7 hnm Zp—-ﬁ)—%‘COSQA'—-;g'Q
+1At+"'( sin 2 A 4 sm27\’)
v 2Qn Y
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y’:—-'—l*—— ————~)——cos2(nt+7\)
. ¥ —n?

— P 'Zf o3 n, D’) g C0s 2 (' ¢t + 1)

B
?';273811127\—‘ Qng(nb 1)~—sm2k
- sin2 vyt H.
* v B ' Ye v B D' ' 4 ( )
+;y<§—77sm27\—-m Wﬁ—l —2—sm2?\
D D
Y2 2 00522 — % (X cos 2 A
v en *—n*\n ~ D/ ¢
— D o ve A cos2yt
Ya 1 Y2 'Y v ! A
+'yz i COS 2\ — y— ) cos 2N — 2-

‘Ye ! ~é
(anos27\+2l,cos2?\)-—

We have now to determine the values of A, B, D, B/, I/, , and v,, for which pur-
pose (Art. 6.) we must find the values of the following quantities :

A, B, D,
A, B, D,
A; By Dy
A4 By D,
71 72
§. Determination of the Numerical Values of the Constants in equations (E), (F),
(G) and (H).

19. Values of A, B, and I,.—The moment of the disturbing force of the sun com-
municating a rotatory motion to the earth considered as a homogeneous spheroid,

3 4x
2: T3 ¢’ (a2 —¢?)sin2 A (Art. 1.)
31.» 4=

—7'13 15 al €Sln2A

and the moment of the forces on the shell

S3p 4= .
=;F-*m—e(a15—-a5)sm2A

3p 47 . .
=55 15¢@ (° — 1)sin2 A,
where ¢ = %‘, the ratio of the outer to the inner radius of the shell.

The moment of inertia of the shell

"*a“"(q — 1),
3F2
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and therefore

6 .
= Tglw esin 2 A (T = one year)

(since T w = 2 = », » = 366°26), which is the same as if the spheroid were entirely
solid. This gives us*

3= . 1
A; = -esinlcos I+

S . 1
B, = —s¢sinlcosI >
v T

D_ ssmIT,

where I = inclination of the ecliptic.
20. Palues of A,, B,, and D,—In a similar manner we obtain

S . 0+ 1
A, = T+ 1) esin I cos I cos?i 7>

3= . 1
'BZ =mé COS‘ZIS][)2I?IT,:
KR R |
D2= -—‘2'7—(0_—:‘*_’—[56008181[122,—1‘—,,
where ¢ = inclination of the plane of the moon’s orbit to that of the ecliptic;

T" = moon’s sidereal period, / = number of days in it = 27'32; and

__ mass of the moon
™ mass of the earth

= 70 nearly.

21. Numerical value of A; B, and D;.—Let the interior surface of the shell be re-
ferred to three rectangular co-ordinates x y z, the spheroidal axis being now that of = ;
and let p denote the normal pressure at the point « y % ; & and g the angles which the
normal makes with lines parallel to the axes of « and 2 respectively. Then if

X =p.0Scos&, Z =p.5Scos{
the moment ot the normal pressures with respect to the axis of y
=2(Zx—Xx)
=3 (xcosl — zcos&)p.dS

=3(a— zz:t>pBScos§.

cos { = > ==’
VA co N,

* Ary’s Tracts, p. 210.

But
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dz

= ()

And in the spheroid

gt a=1
dz ¢ =
de — a® &’

whence by substitution, the moment about the axis of

=2(1 —_ f;—e)xp"BScosz

=2¢2xp.0Scosy,
where

g = ——=

In the determination of p it will suffice to consider the spheroidal surface as
spherical ; and since the disturbing force of the sun is the only force producing the
rotation we are now considering, the other forces may be here neglected. Hence if
the line joining the centres of the sun and earth be taken for the axis of a', and the
plane through this line and the spheroidal axis for that of 2' ¢/,

{ — .
A =33 -2,

and
p= ;%{2;&’5.# —-y’By’—-—z’Bz’};

1
R DL’ 12y 1. O
ST @ 7 (y? +2%) + .

But considering the spheroid as approximately a sphere, and 2’ y' 3’ a point onits sur-

face,
y‘z + z,z —_— aZ — .TIQ,

1 n . .
Sep = 3 ;"13 (3 a2 — a2 + C) :
and if the plane of < coincide with that of a' %/

¥ =wxsin A 4+ zcos A,

A being the sun’s north polar distance, and the spheroidal axis that of 2.

m]co

A
r?

{xz‘,m2A+a Fsin2 A + 22cos? A — & -—~~(i},

,',p — 3
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and the moment about the axis of y

2 _
=3;{f§ e/f{ﬂsirﬂA+x2zsin2A+z2xcoszA—a 5 Cm}BScosz.
35

Let g =17rcosd,

y =rsindsing,
x =rsindcos @,

¢ being the angle which » makes with the axis of 2, and ¢ that which the plane of ¢
makes with that of x 3. Considering the spheroid to be approximately a sphere we
may put r = a, and { = 0. Also we shall have

0S = asind.3493 0.

Hence j])aﬁcos&.BS:a5‘[/.sin4écosécos3¢d9d¢),
‘/‘fz'lwcosz.BS=af’.[fsinzécos-“()cosgodécl@,
J]E@COS‘Q.BS:aSstin2900sécos¢d0d¢,

,/,7)1’2“305&-58=a{[fsinzécos?é'cos%dﬁd@.

2
Since@ / 0 " cos?"t! ¢ . d ¢ = 0, each of these integrals except the last will vanish be-

tween the limits ¢ = O and ¢ =2 7. Consequently the moment about the axis of y
gt 5 in3 2 2 p=0top=2q
__57,]sesm2Aa[ sin3d cos?d cos?pddde {9=0t00=7r }

4

5

;‘%esin2Aa5.
1

. . 8%
The moment of inertia of the shell = —11[: @ (¢°—1). Consequently the accelerating

force of rotation arising from the pressure we are now considering

3 u € .
= —Q—-;Igér_—_'—l‘SIHQA;

or if & be the angular velocity generated by this force in a unit of time

%’—;%'Z%Eq_”—}-—TSinQ A,
=z R (Art. 19.)
Hence we have A, = 5A, ,
¢ —1
By = 95B_1 I’
D, =D
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22. Values of A,, B,, and D;.—In the same manner we obtain

AQ
A.4 —— 95 _ 1’

B,
B4 = q5 — ],

D,
D4—. g — 1

23. Palue of y,,—We have seen (Art. 5. V.) that the angular motion of the solid
shell produced by the centrifugal force of the fluid will be about an axis through the
centre of the spheroid, and perpendicular to the plane passing through the spheroidal
axis of the shell and the axis of rotation of the fluid. Let this axis be now taken for
that of ¥, and the axis of rotation of.the fluid for that of 2, and let 2’ ¥' 2’ be the co-
ordinate of any particle of the fluid; then p denoting the fluid pressure there,

tn= (% =52 a4 (v = 22) ay + (2~ %)

Now the impressed forces with which we are here concerned being those only which
arise from centrifugal force on the fluid, we have (referring to Art. 12, and observing
that the letters which are there unaccented are accented in our present notation)

X=add, Y=0y, Z =24cp.2.
Also, since the motion of the fluid about the axis of y'is that produced by the acce-
lerating force «® ¢ 3 . r acting perpendicularly to » (Art. 12.), we have
& ( , dy &7

ag:—-wzeﬁ.z, a5 =Y dt"_w Eﬁ x.

Hence we have by substitution,
p=at(@da +y dy)+ 2B (dad + 2 d*),
.‘.10=%2 (2 + y'?) + 2B 2 ' 4+ C.
The moment of this force about the axis of 3'

=2e¢2ap.0Scos{, (Art. 21.)

=ao?e3x (2?4 y2+ 2682 3"+ C)d3Scos L.
In this expression we may consider ' 3’ ' as co-ordinates of a point in the surface of
a sphere, whose radius = a. Therefore

2% + Y2 = a® — 2’2 approximately.

Also, since in our results we shall only retain terms of the order ¢ 3, the term2:8 4’ 2’
may be neglected, the whole quantity under the integral sign being multiplied by .

This is the term arising from the effective force on the fluid.
Hence, the moment about the axis of y

=a2e3x (a2 + C— 2238 cos L.
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The spheroidal axis being the axis of z we have
' ==xcosB — wsinf,
22 = 22cos?B — 2 wsin2 B 4 2?sin?B;
and substituting the expressions for # and z in terms of the polar co-ordinates as in
article 21, the above expression reduces itself as in that article to
W?esin2B 2 za208 cos

_—-._aﬂesin2(3a5qﬁsin30coszécos2¢dézl¢

4o
I 5
=z esin 2 3 ab.

Dividing this by the moment of inertia (::%raf’ (¢° — l)) we have (if «" be the an-

gular velocity generated in a unit of time by the force we are now considering)

QE .
! —sin 2 3,

e %"
“ Tl =0)

and

and therefore (Art. 5, V.)

71 - TS_ l)
__ mE 1
Te-1y’
. . 2w
since if ¢, = one day, v = -
1
24. Value of y,,—We have seen (Art. 16.) that
we
2=
1
=e .o

25. Substituting the values of A, B, B/, D, and D’ (Art. 6.) we obtain

5 RE 2N 1 1 v .1
A:qé('_]_ 3 -TssmIcosI<,—F—+;—I~i—v,—cos2 z—,ﬁ),

_ ¢ 8% . i 1
B=g_—7 ~esinlcoslp
B=—L 27 cos2lsin2inp
Te—1 2d(e+ 1) i
=L 37 nl s
D—qs_l S esin I
> 3w . 1
Df=—qag_l-2y,(c+])ecosIsm2z,—r-,.
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These give us

cos 21
C(;g:_[—’
n = %TZ’_, n = %> (Art. 5, I. and II.)
n=g= + (Art. 23.)
Yo = T ?1;" (Art. 24.)

: i !
LYEnt = gFoqTer

For the convenience of reference we may also put down the following ratios :

n_gf=1 =11 ( T_)
,y—2 o o= 2 P smce;:_v
_¢=14 _¢-—1T1
- ¢ e ¢ T ve
Yi:—l- h=g5—~_l-,
v ¢ v ¢
n_L.¢-14
YT ¢ ¢ we
) = 86626, 7 = 186,
J = 2732, o= 70.

407

Also, taking the ellipticity which the earth would have had if it had been originally

fluid and homogeneous, we have ¢ = 004 nearly; which also gives

1
— == "68.

Ve
!

. 0 *88 . n
Hence it appears that -y can never exceed 755 or 047, a small quantity; but ™

may be greater than, equal to, or less than unity, according to the value of ¢, or the

thickness of the earth’s crust.

§. Final Equations, giving the Numerical Values of x and y.

We may now proceed to the substitution of the values found in the last section in the
coefficients of equations I, I, G, and H (Art. 18.). T shall begin with equation E,

26. The coeflicients of sin 2 (n¢ 4 1) is

B 7 1 "y B ) D

{ “mt A ey (Fp-1)e
Y

MDCCCXXXIX. 3G
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Its value depends on that of %, which may either be much less than unity, equal to

unity, or greater than unity, according to the value of the ratio (¢) which the outer
bears to the inner radius of the shell (Art. 25.).

1. Let the shell be thin, or ¢ nearly = 1; then will% be small (Art. 25.). Conse-

quently the coeflicient becomes

B
_(1"7{ In
__ % B
- v 2n
?—1 B
= - ¢° oy

Se .
= - Z—smlcosl.
v

2. Let the thickness of the shell be such that «z— =1 nearly. Then (Art. 25.)

*—11
z F = 1 nearly,

g = (Q __Q_ 5 EYL nearly,

and
= (8'71)% = 1'3 nearly,

which determines the corresponding value of the ratio of the inner and outer radii of
the shell. I shall reserve this case for a distinct consideration in the sequel.

3. Let % be greater than unity. If the shell be so thick that ¢ becomes consider-

able, ¢, will become small, and the coefficient will become
B

T aon
Se .
= — —sinlcosl
4y

(9 being considerably greater than unity). This value is identical with that found in
the former case.

i
The coeflicient of sin 2 (n' ¢ 4 A') (since % is always small) becomes

B _ -1 B
T yed T T ¢ ed
3 €

T o N
= =T Ve D) o cos 2 I'sin 2 2.

" - , .
The coeflicient of cos 2 ¢ ¢ consists of two parts, of which the latter (smce -'—;— is small)
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reduces itself to

D .
g;'*é-SlIIQ?\';

and in like manner, when —:7 is small, (or the thickness of the shell small) the first

part becomes

7. D

&2 ) Sin 2 )\,

and the whole coefficient becomes

1 38 (sinl . sinIsin2: .
= —q—; . 72 { 7" cSIn 2 A — %Tg"‘(}"‘:':“l—)‘ sin 2 7\' } .
The coeflicient of sin 2 v £ becomes (1f ¥ be sma]l)
Y, _];3 . < "N 1_31 o mA
7 9005.27\4—()’2 2 cos27x—f7g—g—
1 8 sin I cos T cos2Isin2s
— _ég.z)_.{,___;g -c0327\+m00s27\’
sinTcosI sin I cos I cos?:
- v? e (ec+1

. . . 1 s e
These two coeflicients being affected with the factor g5 are very much diminished

when ¢ becomes considerable.

The coeflicient of ¢ = »Z-f A, and becomes

5
-1
q - A
Sme 1 1 y 1
. 27E — g .Y eos24 o b
== sm][cosI{T +(r+ [ "7 oS 'T’}
The constant term becomes
3e . . 3¢ . LT '
Z—ysmlcosl.:1n2h+47~(v~_—- cosQIsm2zT~,st?\.

Taking the expression for y, the coefficient of cos 2 (n # 4 A) becomes, when

" .
— is small,
Y

_7rD
v 2n

3e .
= —-Z—vsml..

This is also true when ¢ becomes considerable.
The coefficient of cos 2 (#' ¢ 4 A') becomes
Yo D

CRET
— 3e_~
T 44 (o + 1)

362

. . T
-coslsm2z@-
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The numerical values of the coefficients of sin 2 ¢ ¢ and cos 2 ¢ ¢ are respectively
the same as those of cos 2 ¢ ¢ and sin 2 y ¢ in the expression for z.
The constant term becomes

Q

3 Q€ . . T !
Bsmlcosm\ mcoslsmm@cosm\

1 3 . 3 9
+?5{—9—;5smlcosl taEE T coszz} .
27. Hence we obtain the following expressions for x and y, for any thickness of the

shell for which -:7 is small.

8¢ , . 3 T !
x._-—Z—vsmlcoslsm2(nt+>\)—-—él—m-ﬁ-,r,cos2lsm2zsm2(nt+:\)
1 8 (sinl , sinIsin27 ' ¢
— e —_—— "R Q! —
+q5 2{ s sin2h (e 1 l)bm_,}\}cos2 F—17%% (L)
sinIcosI cos2Isin2i
1 3 v 082At g+ 2N 9 O .. °
=5 sin wTE T
7 2 sinIcosI  sinIcosIcos®s ¢F—1""%
T T 8o+ 1)
Swe t Ly L8
— —_— —_— 29 — .
+— smIcosI{T+(r+l ;€08 I,T,I+C,
y=— —~smIcos2(nt+7\)-I—L”((r+ ])coslsm2zT,cos2(n ¢+ )
1 38 (sinl . sinlsin27 b e 7 ¢
+F._§.{—v—2—sm27\—msm27\}Sln2q6_l s (K.)
sinI cos I cos2Isin27 )
e ———————— J R — ‘)
L s 2 cos 22+ 27 + 1) cos 2 A , (f -
—_ COS . TE H
+95 2 sinTcosI  sinIcosIcoss ¢ —1"" 4 +

v? 2o +1)
when C and C' are small constant terms whose values are given above.
These are the expressions for 2 and y when —z— is small, or the thickness of the shell

comparatively small. When the thickness is such that ¢ becomes counsiderably
b

. . . . t
greater than unity, the terms involving sine and cosine of 2 qbg_ [ T¢ 5 may be en-
1

tirely omitted, and the expressions will then be true in this case.

28. Since the motion of the interior fluid cannot be subjected to observation, it
would be useless to make the substitution of numerical values in-equations (G.) and
(H.) (Art. 18.). We may remark, however, that the motion of the axis of instanta-
neous rotation of the fluid will be exactly similar to that of the axis of the shell, and
of the same order, as is easily seen by comparing the two equations just mentioned
with the equations (E) and (F) of the same article.
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\. Interpretation of the Final Expressions for x and y (Art. 27).

29. The terms in 2 and y which have 2 (n ¢ 4+ A) for their arguments are the two
parts of solar nutation. They are identical with the expressions for solar nutation
deduced on the hypothesis of the earth’s being a homogeneous solid spheroid. It
will be recollected that this excludes the particular case in which the outer and inner
radii are in a certain ratio to each other (Art. 26. 2.).

The terms of which the argument is 2 (#' £ 4+ 1) are the two parts of lunar nuta-
tion, which are, for any thickness of the shell, identical with the expressions deduced
on the hypothesis of the earth’s being entirely solid and homogeneous.

The term in « which constantly increases with # is the luni-solar precession. It is
again identical with that found on the hypothesis just mentioned. We may also re-

mark, that this agreement is independent of any approximation depending on the
.y n u .
smallness of such quantities as 5 or and is consequently more accurately true

than in the expressions for nutation.

g t -
FoiTegor2yt indicate
1

an inequality depending entirely on the fluidity of the interior mass. If we denote
the coeflicients in these terms by G and H, and neglect the other terms, we shall have

30. The terms of which the common argument is 2

x=Gcos2yt— Hsin2y¢,
y==Gsin2y¢t+4 Hcos2y¢;
or

x=4x/G?*+ H?cos 2 (y t + K),

H . :
(where tan 2K= G) which show that x and y would thus be the coordinates of a
point moving uniformly in a circle; and if R be its radius
R = /G2 + Hz;
and the period of revolution would = —s

—C—'h
=7

It appears by the expressions for G and H, that these quantities will be the greatest
when ¢° is least, i. e. when the shell is very thin; but even in that case they will not
rise to magnitudes greater than those of the order of the solar nutation; and when
the thickness of the shell becomes considerable, and ¢ differs considerably from unity,
the inequality will become quite insensible.

There is a corresponding inequality in the motion of the axis of instantaneous ro-
tation of the fluid, indicated by corresponding terms in 2’ and . Comparing them
with the terms in x and y, we find (omitting the other terms)
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#=—LGecos2yt+ LH.sin2yt¢
Y1 "N
y=—LGsin2yt— 2 Hcos2yt;
"N "
or m’=—%3\/G2+H20032(yt+K),
1

Y _—-JG2+ H2sin 2 (y ¢ + K).
Consequently the locus of 2' ' would also be a circle described about the common
origin of x y, 2 and ¥/, and having a radius = % R By this inequality, therefore,

alone the points P and P' would describe cilcles about the same centre in the same
periodie time, with radii in the ratio of y, : y,, and differing in angular position by 180°.

The motion now described is that which would obtain if no extraneous disturbing
forces acted on the spheroid, and the axes of instantaneous rotation of the shell and
fluid should be separated by a small angle. It is a case of rotatory motion which has
not before been investigated.

. The case¢ which remains for our consideration is that in which y = n nearly
(Art 26.). ‘

In our previous mvcstwatlons we have supposed the spheroidal shell to be of a de-
finite constant thickness, and not to increase with the time. In the case of the
earth, however, in which the solidity of the shell is conceived to be due to the external
refrigeration of the mass, this thickness must be constantly increasing, though the
rate of increase must be excessively slow ; and our results, as expressed in equations
(E), (F), (G), and (H) (Art. 18.), will be true for any instantaneous value of ¢, or
of the thickness of the shell. So far, however, as the inequalities are of appreciable
magnitude, we have seen that they are independent of particular values of ¢, except
in the case which we have now to consider.

Referring to equation (E) (Art. 18.) we find that when y — =z is very small, we
have (taking what then become the most important periodical terms) ‘

w=771n9 nD 1) sin2(nt -+ 2)
%lf»;ig(%%ml)%sin27\cos2yt
+'_y§__7§<'y ) cos27\sin2fyt.
NOW'YY-lne_ ?:"',yln=%°7_n(since7=nneal‘ly);
also

= cos I.

o=
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D
Hence puttmg - (1 —cos I) 5 = h, we have

h .
T = — _nsm2(nt+h)
+,>7——"£n {sin2>\00527t+cos27\sin2yt}
Y . .
==&-“__~—;L{sm?(yt—i—k)—sm2(nt+;\)}

sin 2 (y — n) ¢
fy——

=2h. cos 2 (nt 4 ) very nearly,

0
an expression which assumes the form - when y = n accurately. 'To put it under a

more convenient form, assume ¢ a partlcular value of ¢, such that

2 (y — n) ¢ = some multiple of =

=2m 7

and let t=1¢ 41",
y—n=s,
and when t="¢,
let Y —n=S$.

For the clearer interpretation of this term, let us first suppose the thickness of the
shell, and therefore ¢ and s, to remain constant. We have

= thmgsls(t + ¢

cos2 (nt 4+ ¢' 4+ 1)

2h
=, sin 28 t"cos2 (nt" 4+ L).
In a similar manner we obtain
2k H 1 H i
y=——sin2s¢.sin2(nt' + L).
1

Since s, is supposed very small compared with » and the product s; ¢ may be con-
sidered as nearly constant for any one year, in which time sin 2 (n #' 4 L) will pass
through its period, and the solar nutation for that year will depend on

2h "
S sin 2 s, ¢,
Consequently from the time when ¢ = # or #' = 0, this nutation will increase every

year till 2s¢' = %, after which it will again decrease. We should thus have a secular

inequality in the solar nutation, of which the whole period would be ;—3 and of which
1

the greatest value, with reference either toax or y,
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In the actual case in which y constantly decreases, suppose that at the time #' from
the time #,
s=y—n=us —rt,
r denoting the rate of decrease of y, and being taken constant during a small aug-
mentation in the thickness of the shell. Then shall we have

x = 2}:t,,sm2 (s—rt")¢t".cos2(nt+ L),

with a similar expression for y.

This expression indicates a secular variation in the secular inequality just noticed,
which increases with the diminution of s, — r ', or the increase of ¢, till r ¢' becomes
greater than s,, after which the inequality will constantly decrease again.

The determination of » would require that of the rate at which the thickness of
shell may increase. We have

d
7—-n=s=sl—-a—§t"
dy
=S1——dtitﬂ’
dy
.7"—%'
But __ ¢ L
Y=FoTTE (Art. 25.)
—_a’ 7
“at—-adt’
dy _ . @a’d 7: da
dt — Y (@ —a®? ¢ at

Let 3 a = increase of thickness in time T (one year); then

da
Ba:—‘z-t-T,
and _ ¢ e da
=5 o12Ts
1
— 35‘6a

a T¢

by the substitution of numerical values (Art. 26. 2.). Hence » may be known when

da . .
— 18 determined.

2x
X and for # its value <, we have

Substituting for ¥, its value Es—e—f

=—§~'§3—_—_—T°(I—COSI)D
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. . . . 2 i
We mayhere, without sensible error,put for ¢ its particular value{ (m) (Art.26.2.) }
when v = n. We thus obtain
h =+02 ,7;; nearly, 1" being the angular unit.

Also (Art. 25.)
5 1 2x

y—n:—ég-_—__—f'z‘e-t—l-——wir:

5 .
= (g—b‘q_—]-lls—-2)%’

— (27 . )1
_(95_11464—2 A

2k

—-—n

Hence the greatest value of the secular inequality = o

04 n .
e T——“-— 3
F—11464—2

and the whole period of the inequality = )
¥y —n
T
- .
1°464 — 2

¢ —1

2

—_ 7’

1f we assign any particular value to the above expression for 5 we may easily

determine the corresponding value of ¢, and of the thickness of* the solid shell, and
also the period of the inequality, supposing the thickness of the shell to remain very
nearly the same during such period. Thus, suppose the greatest value of the inequality

to be 5", we shall have
04

= = 5.
g—5——9_—1 1°464 — 2
N 1
This gives 7= *77 nearly,
or a ="77 a,.

Also when y = n accurately, we have (if ¢' be the corresponding value of ¢)

"
F=1 1464 — 2 = 0,
which gives
1
7 = *768472,

or, if a' be the corresponding value of «,
o = 768472 . a;.
MDCCCXXXIX. 3H
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Therefore
a — d = 6 miles approximately.

The period would be about 125 years.

In order that these numerical results may be approximately true, the variation of
a — &' during the period of 125 years must be small compared with ¢ — o'. If we
suppose the thickness of our shell to increase at the same rate as that of the earth’s
crust in the process of its solidification, this will probably be true.

Again, if we suppose the inequality to amount to about 1000", we obtain

a — d = 130 feet nearly ;

and the period, supposing a constant, would be about 25,000 years, i. e. in one fourth
of that period the part of solar nutation dependent on the term we are discussing would
pass from zero to about 1000 seconds. If, however, we suppose the solid shell of our
spheroid to increase in thickness at the same rate as the crust of the earth, the dif-
ference between a and @' would possibly not remain within the value just mentioned
for nearly so long as 6000 years ; in which case, supposing the inequality to be zero
when @ — o should equal about 130 feet, it could never afterwards amount to nearly
1000 seconds ; nor could it have been previously so great, because its previous values
must have corresponded to values of @ — &' less than the above value. Our investi-
gation, however, does not tell us whether 120 or 130 feet would be near the value of
a — d the last time the secular inequality should vanish before a became = o/, and
consequently we cannot say with certainty that 1000 seconds would be the extreme
limit to which the inequality would attain. In fact, the exact determination of this
limit would require the very accurate determination of a as a function of #, which
cannot be known in the case of the earth’s crust without an accurate knowledge of
the conductive power of the matter which constitutes it. From the small value, how-
ever, of @ — @' and great length of the period corresponding to the maximum of 1000"
for the inequality we bave been considering, it may perhaps be deemed extremely
improbable that it should ever exceed that value in the case of the earth. The dura-
tion of time for which the effect of the cause we are discussing on solar nutation
would be sensible to observation would be, that necessary for the thickening of the
earth’s crust so to increase that @ — «' should pass from -+ (6 or 8 miles) to — (6 or
8 miles), and might therefore be approximately determined if the quantity denoted
by r in this article were known.

. Degree of Approximation in the preceding Results.

The results at which we have arrived above rest on the hypothesis of the instant-
aneous planes of rotatory motion being parallel to the tangent plane to the interior
surface of the shell at B’ (Art. 8. III.) ; and it remains for us to consider the degree
of approximation to the actual motion which has been thus obtained. It will be re-
collected that, on this hypothesis, the centrifugal force produces a force Z = 2a%¢3. 2
(Art. 10.), which alone is effective in producing motion in the fluid, this motion being
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about the axis of y, and that which, combined with the angular motion about A B/,
causes the angular motion in space of this latter axis. The value of Z has been
found on the hypothesis of » being constant, or of the rotatory motion about A B’
being the same as if the sections of the inner surface of the shell were circles instead
of being ellipses of small eccentricity (Art. 9.) ; and the pressure on the inner surface
of the shell depending on the centrifugal force has been calculated on the same hy-
pothesis. It will be necessary therefore to examine the errors thus committed.

33. Let us conceive a closed cylinder entirely filled with fluid, which revolves uni-
formly about the axis of the cylinder with a velocity », and is not acted on by any
external force. If the form of the cylinder be then changed without changing its
volume, so that each section perpendicular to its axis shall become an ellipse of small
eccentricity instead of being circular, it is manifest from the conditions of symmetry,
that the angular motion of the fluid, though no longer uniform, will still be steady
about the same axis, as in the circular cylinder. Consequently if p' be the pressure
at any point on the surface of the elliptical cylinder, o' the velocity of the fluid at that

point, we shall have
1

'=C— 5%
and if p and v be any corresponding values of p' and o' (which may be taken for their
mean values)
p=0C— % V7,
and
P=p—g (2 —w).

Now the quantity of fluid which passes through any section of the elliptic cylinder
made by a plane through its axis, must be constant, and therefore the velocity v' must
vary inversely as r'*, the radius vector of the elliptic section from its centre. There-
fore, if r be the value of ' when v is that of o' (i. e. the mean value of #)

.,.2

V2 =2 ezl

2
=u2-£72(1 — 2¢ cos d),

where &' is the axis minor of the elliptic section. Also

_d 4V
=72

..—:b'(l—]——g—)?

r2
=144

3

and

¥ There can be no doubt of this hypothesis being true, at least to a sufficient degree of approximation for
our immediate purpose.

3H2
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whence
v2 — 2. =02¢' (1 — 2cos?{);
and

1
p’ =p-+ EUZE'COSQU',

or, putting in the small term « » for v,
! @ o /
p=p-+ griccos2d.

We have here taken »' and ¢ as the polar coordinates of the elliptical section of the
surface, but it is evident that this expression for the fluid pressure will be equally true
for any point of the fluid of which ' and ¢ are the co-ordinates, p and r being taken
with reference to an ellipse passing through the point (¥’ ¢') similar to the elliptic sec-
tion of the cylinder, and similarly situated.

The case which presents itself in our actual problem is analogous to the one just
considered, so far as regards the elliptical form of the sections made by the planes of
rotatory motion, these planes being parallel to the tangent plane at B’ (fig. 2.). The
common ellipticity of these sections is ¢ 8 (Art. 9.), and, therefore, in finding the effect
on the shell, of the pressure arising from the centrifugal force on the fluid in article
23., we ought to have used for p the pressure as found in the last article, p/, or

w2
p+ 5 riefcos2d.

This, however, would only introduce into p a term of the order ¢ @3, and which, there-
fore, may be omitted, as shown in the investigation just referred to (Art. 23.). Also,
taking this expression for p' as applicable to any point of the fluid (as explained in
the preceding paragraph), it is easily seen that the force Z (= 4?¢ 3. ) will only be
altered, in consequence of the ellipticity of the sections of the shell, by a quantity
small compared with itself, and which may, therefore, be neglected. Our results,
then, will be quite accurate to the degree of approximation to which we have pro-
ceeded, assuming the parallelism of the planes of rotatory motion to the tangent plane
at B'. I shall now proceed to this point.

34. It has been shown (Art. 15.) that the angular velocity of A B'in space =w.:3,
and also (Art. 28.) that the angular velocity of A B is of the same order as that A B'
i. e. of the order ¢ 3. The angular motion of A B' (Arts. 12..... 15.) is due entirely
to the obliquity of the planes of rotatory motion of the fluid particles, and the above
value of it is calculated on the hypothesis of these planes of rotation being parallel to
the tangent plane at B'. It is easy to see, however, that if this hypothesis be not ac-
curate, the value of ¢, (Art. 16.) and therefore of the angular velocity of A B'
(Art. 15.) will still be quantities of the same order respectively as the calculated values
which have been given, so long as the planes of rotation shall make angles with planes
perpendicular to A B' which, instead of being = to s (Art. 8.), shall be merely of the
same order of magnitude. Without assuming, therefore, the accuracy of the above
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hypothesis, we may still assert that the angular velocities of A B dnd A B' will neces-
sarily be of the order ¢ 3.

The positions of the planes of rotatory motion will be affected by the change of
position of the shell, or of A B, and also by that of A B’. It will be convenient to
consider these cases separately, first, supposing A B' fixed while A B moves, and
then taking A B fixed and A B’ in motion.

In the assumption, that A B' shall be at rest, it is meant that it shall here be con-
sidered as unaffected by the angular motion which has been investigated, and which
is due to the obliquity of the planes of rotatory motion. Our first object will be to
examine whether any motion will be communicated to A B' as the direct and imme-
diate consequence of the motion of the shell, and independently of centrifugal force
in the fluid, to which the previously calculated velocity of A B'is entirely due; also
A B’ ought strictly to be considered as the line of quiescent fluid particles, in which
sense it will not necessarily be a straight line, as we have hitherto considered it in
calculating the effects of centrifugal force on the fluid. It will, therefore, be neces-
sary to examine the degree of its deviation from rectilinearity.

Suppose the shell to be at first in the position represented by the dotted line
(fig. 2.) and then to be brought into that represented by the continuous line, A B,
coinciding at first with A B'. Then while A B moves through the angle B' A B (3),
the normal motion (N N") at any point (N) cannot exceed a quantity of the order ¢f3,
as is easily shown*. Also it is evident that (considering only the velocity due to the
displacement of the shell) the ratio

vel. of fluid particle at N
vel. of point B of the shell

. NN, . .
must be a quantity of the same order as g7, i. €. of the order ¢; and it is easily seen

that for any particle in the interior of the fluid the motion cannot exceed a quantity of
that order. Also the conditions of symmetry will evidently require that the particle
at A should remain at rest.

If the spheroidal axis, instead of moving from A B’ to A B, move from A B to A %,
the same conclusion respecting the ratio of the velocity of any fluid particle to the
velocity of B will still be true, as is easily seen.

Let v, be the velocity of B, v that of a particle Q, from the cause we are considering,
the distance of Q from A being r, and its distance from the axis A B' = ¢. Since v

will be of the order ¢ v, let v =Fe —2 v;, where % is a numerical quantity, the value of
which may depend on the position of the particle. Also the velocity of Q from the

motion of rotation round A B'=w¢. Consequently, if Q be so situated that these

* N v must manifestly vanish with ¢ as well as with 3, and the expression for it must, therefore, involve
some power of e as a factor.
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velocities are impressed upon it along the same line and in opposite directions, the
whole velocity of Q will

r
=ke_ v —wg,
and if this = 0, Q will be a point in the line of quiescent particles. This gives us

D - e

—UC-“- is the angular velocity in space of A B, and is, therefore, of the order ¢ 8, and

= &'¢3 (suppose). Consequently, the angular deviation of Q from A B' (Which = -34)
kK
=B,
a quantity extremely small compared with 3. A B’ may, therefore, be considered as a
straight line, to the required degree of approximation. Also the angular velocity of
any point in A B' due to the cause here considered, is of the order ¢ 3; it may, there-
fore, be neglected in comparison with the angular velocity (« s 8) of A B' previously
determined (Art. 15.).

35. We may now proceed to consider the positions of the planes of rotation of dif-
ferent particles of the fluid when B does not coincide with B'. It has been shown
(Art. 8. III.) that the instantaneous positions of these planes must approximate more
or less to parallelism with the tangent plane at B'. This approximation, however,
may be different for different fluid particles, in which case it will manifestly be most
accurate for particles nearest to B' and 4/, and less so for those nearer the plane of
the equator. In considering, therefore, the degree of approximation it may be con-
venient to refer to a mean plane of rotation, or an imaginary plane whose inclination
is the mean of the inclinations of all the planes of rotation of different particles.

As B moves about B' the tangent plane at B’ will move from one position to another,
revolving about its ultimate intersection with the consecutive position, as an axis of
instantaneous rotation, with a certain angular velocity. If B moved uniformly round
B’ (as would be the case if the motion were due entirely to the centrifugal force on
the fluid (Art. 30.)), the angular velocity of the tangent plane would be uniform ; and
since the motion of the fluid would then be steady, the angular motion of the planes
of rotation would also be uniform, and the angle thus described in a unit of time by
the mean plane of rotation might be taken as a measure of the whole constraining
JSorce (arising from the reaction of the solid shell on the fluid) which produces this
particular motion. In the actual case the motion of B will not be uniform; but since
the variation of its motion will be extremely slow, the propositions just enunciated
will still be approximately true for any comparatively limited period, and we may
still take as a measure of the instantaneous constraining force, the angle actually de-
scribed by the mean plane of rotation, in the manner above explained, in a unit of
time.
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Now if A B should move from A B’ through an angle (@, it is easy to show that the
tangent plane at B’ must move through an angle of the order ¢ 8; and it is easily
seen likewise that if A B move in any other direction, as from A B to A 3 through
an angle @/, the angle moved through by the tangent plane at B' will be of the order
s 3. In every case, therefore,

ang. vel. of the tang. plane = &' ¢ . ang. vel. of A B
=kef
where % is some finite numerical quantity. Consequently, since the angle described
by the mean plane of rotation in a unit of time cannot be greater than this, that
angle, and therefore the instantaneous constraining force, must be of the order ¢ 3.

36. Let us now consider the relation between the constraining force and the angle
which the instantaneous mean plane of rotation makes with the instantaneous tangent
plane at B'. Let + denote, as heretofore, the angle between the tangent plane and a
plane perpendicular to A B, / that between the tangent plane and the mean plane.
Now instead of the shell moving on continuously, let us conceive its motion to cease
at any instant, and consider its action, when thus at rest, on the fluid mass. If we
take a fluid particle near to B’ and in contact with the surface, B’ may be considered
as the centre of its rotatory motion, provided its distance from that point be not less
than a quantity of the order ¢ 8 (since the angular displacement of B' cannot exceed
a quantity of the order ¢ 3). Consequently, if the motion of the plane should cease
at any instant, as above supposed, it is manifest that the plane of motion of this par-
ticle must be immediately constrained to coincide with the tangent plane at B/, i. e.
the constraining force upon it must have been such as to change its plane of motion
through an angle of the order / in a very short space of time. If we take a particle
in contact with the surface, rather more remote from B', the same conclusion must
be approximately true, though a somewhat greater time may be necessary to produce
an equal change in the position of its plane of rotation. And similarly if we take a
particle in contact with the shell at any point, for instance, between B’ and N/, the
reaction of the surface must produce a similar effect on its plane of rotation; and
moreover, it is easily seen that if the shell be supposed to remain thus at rest for a
whole revolution, for example, the effect produced in that time must be of the same
order of magnitude as that for particles near to B'. Precisely the same effects must
take place about ' and between &' and L/, whence it will necessarily follow that
similar effects and of the same order of magnitude must be produced on the planes
of motion of the particles constituting the interior part of the fluid intermediate to
the portions N’ ' and L' /' of the surface. Similar effects must also be produced on
the portion of the fluid exterior to that just specified, though these effects may de-
crease in magnitude as the particles are situated nearer to C and c.

Hence then it follows that (taking, for the greater distinctness, one day for the unit
of time) if B, and therefore the tangent plane at B/, were to remain at rest for a unit
of time, the constraining force, estimated as above described, arising from the reaction
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of the shell on the fluid, would be such as to cause the mean plane of rotation to move
through an angle of the same order of magnitude as the instantaneous angle between
that plane and the tangent plane at B, i. e. of the order /. But it is evident that if
the tangent plane at B/, instead of remaining at rest, as we have liere conceived it to
do, have its actual motion from the instantaneous mean plane, the whole effect in
one day on the plane of rotation of a particle near to B' or 4" must be greater than if
the surface had remained at rest; and the same conclusion must also be true for par-
ticles more remote from B’ or . Consequently the angle through which the mean
plane of rotation moves in one unit of time, must, & fortiori, in the actual motion be
of the same order as /, i. e. the constraining force, estimated by this angle, must be of
the order /. But it has been already shown (Art. 35.) that this force must be of the
order ¢ 3. Consequently / must be of the order ¢2(3; or, since+ = 2¢ 3, the angle
between the mean plane of rotation and the tangent plane at B’ is a small quantity of
a higher order than s, which proves the truth of our assumption, in the previous in-
vestigations, of the coincidence of these planes to the required degree of approxima-
tion.

37. We have hitherto considered B to move while B’ remains at rest; let us now
consider B' to move while B remains at rest. Suppose A B'to move through an
angle $'in its motion in space which has been previously investigated, B' then coming
to 33'. If the shell were spherical, the angle between the tangent planes at B’ and 3’
respectively would = @/, and in the spheroid the angle between these planes can differ
from (' only by a quantity of the order ¢ 3. Consequently, in order that the mean
plane of rotation should be always parallel to the tangent plane at the extremity of
the axis of rotation of the fluid, it must move through an angle of the same order as
that (3') described by that axis; whereas when A B moves through an angle 8/, the
corresponding angular motion of the mean plane of rotation is (as we have shown)
only of the order ¢ 3. 'We must examine how this angular motion of the mean plane
is produced when A B'is in motion.

While the axis of instantaneous rotation in a rigid body changes its position in the
body, the instantaneous planes of rotatory motion necessarily retain their perpendicu-
larity to it, and therefore the angular motion of those planes is equal to that of the
axis. Now we have shown (Art. 15,) that the change in the position of A B'is pro-
duced in a manner exactly similar to that in a solid body, so that the same cause
produces simultaneously the angular motion of A B/, and an equal angular motion of
the planes of rotation ; whence it is easily seen that the mean plane of rotatory motion
when the axis has moved to 3', cannot, on this account alone, deviate from parallelism
with the tangent plane at 33’ by a quantity greater than of the order ¢ 3. Conse-
quently the additional angular velocity of the mean plane of motion necessary to pre-
serve it in parallelism with the tangent plane cannot exceed a quantity of the order

¢.ang, vel. of A B,
= K¢g.
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This additional angular velocity must be produced by the constraining force as pre-
viously described. The force, therefore, in this case, as well as in the one previously
considered, must be of the order ¢ 3; whence it also follows, as before, that the angle
between the instantaneous mean plane and the tangent plane at the extremity of the
axis of rotatory motion of the fluid must be of the order ¢2 3, a quantity to be neg-
lected in comparison with 4

Also, since ¢/ is small compared with ¢ in each of the above cases considered inde-
pendently, it will be likewise true when the two causes act simultaneously, i. e. in
the actual motion of B and B’ about each other. Hence all our previous results will
be true to the required degree of approximation.

The following then are the results at which we have arrived, supposing the earth
to consist of a homogeneous spheroidal shell (the ellipticities of the outer and inner
surfaces being the same) filled with a fluid mass of the same uniform density as the
shell.

I. The precession will be the same, whatever be the thickness of the shell, as if the
whole earth were homogeneous and solid.

II. The lunar nutation will be the same as for the homogeneous spheroid to such
a degree of approximation that the difference is inappreciable to observation.

III. The solar nutation will be sensibly the same as for the homogeneous spheroid,
unless the thickness of the shell be very nearly of a certain value, something less than
one-fourth of the earth’s radius, in which case this nutation might become much
greater than for the solid spheroid.

IV. In addition to the above motions of precession and nutation, the pole of the
earth would have a small circular motion, depending entirely on the internal fluidity.
The radius of the circle thus described would be greatest when the thickness of the
shell should be least; but the inequality thus produced would not for the smallest
thickness of the shell exceed a quantity of the same order as the solar nutation ; and "
for any but the most inconsiderable thickness of the shell would be entirely inappre-
ciable to observation.

In my next communication I propose to consider the case in which both the solid
shell and the inclosed fluid mass are of variable density.

W. Hopxins.

Cambridge,
November 19, 1838.
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